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Finger-interaction mechanisms in stratified 
Hele-Shaw flow 
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(Received 25 June 1984) 

Interactions between a few fingers in sharply stratified Hele-Shaw flow are investi- 
gated by numerical integration of the initial-value problem. It is shown that fingers 
evolving from an initial perturbation of an unstable interface consisting of a single 
wave are rather insensitive to variations of the control parameters governing the flow. 
Initial perturbations with at least two waves, on the other hand, lead to important 
finger-interaction and selection mechanisms at finite amplitude. On the basis of the 
results reported here many features of an earlier numerical study of the ‘ statistical- 
fingering ’ regime can be rationalized. 

1. Introduction 
In their comprehensive review of multiphase flow through porous media Wooding 

6 Morel-Seytoux (1976) discuss finger-selection, competition and interaction mecha- 
nisms in stratified Hele-Shaw flow. They comment that according to laboratory 
experiments on such flows the evolving interface morphology appears to depend 
sensitively on the viscosity ratio across the interface. On the other hand, since 
analytical studies of asymptotic, steady-state solutions to the so-called Hele-Shaw 
equations (Saffman & Taylor 1958; Saffman 1959) had not at that time revealed any 
such dependence, Wooding t Morel-Seytoux were led to speculate that the explanation 
of the laboratory observations involved three-dimensional effects not represented in 
the Hele-Shaw equations.$ 

In an attempt to address these issues and others, we have developed a numerical 
implementation of the vortex-sheet approach to stratified Hele-Shaw flow with a 
sharp interface (de Josselin de Jong 1960), which allows simulation of solutions 
to the initial-value problem for flow regimes of relevance to reasonably large 
laboratory experiments (Tryggvason t Aref 1983, henceforth referred to as TA ; see 
also Aref & Tryggvason 1984a). The studies reported in TA were primarily concerned 
with ‘statistical fingering’, i.e. with flows where many fingers of different shapes and 
sizes compete and interact. Initial conditions were chosen as ‘random’ collections of 
waves of different wavelengths and amplitudes. In  this paper the emphasis is on more 
regular flows. Initial conditions with just one or two waves are considered, and the 
main objectives are to discover, characterize and quantify finger competition and 
interaction mechanisms as a function of a few available parameters in the initial state. 

t Present address: Courant Institute of Mathematical Sciences, New York, NY 10012. 
$ We make a distinction between solutions to the Hele-Shaw equations and stratified flow in 

an actual Hele-Shaw cell. The degree to which the former represent the latter is a topic of ongoing 
debate and investigation. For recent work relating to one aspect of this, viz the pressure-jump 
condition at the interface, see Park & Homsy (1984) and Park, Gore11 &, Homsy (1984). 
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The main result that emerges is that single-wave initial conditions lead to essentially 
uniform arrays of similar fingers with little dependence on control parameters such 
as viscosity ratio or surface tension. However, even a slight admixture of a second 
wave in the initial state leads to finger competition and/or merging modes of 
evolution related to those seen for the statistical problems studied in TA. 

We shall assume that the reader is familiar with or can refer to the general 
discussion in TA of basic equations, the vortex-sheet formulation and the description 
of numerical technique, and thus we shall concentrate here on presenting results. We 
simply repeat that there are two essential control parameters in the flow equations, 
viz the ‘ Atwood ratio ’ of viscosities A (viscosity difference over viscosity sum) and 
a non-dimensional surface-tension coefficient B.? Thus the objective of the present 
study is to discuss patterns of evolution from simple one- and two-wave initial 
conditions as a function of A and B.  Accordingly, $ 2 is devoted to initial perturbations 
of a flat interface consisting of a single wave, whereas $3  explores the richer structure 
that ensues when the initial perturbation contains two waves. Our main conclusions 
are summarized in $4. 

2. Singlewave initial conditions 
In the past, studies of the finite-amplitude Taylor-Saffman instability have been 

concerned primarily with the asymptotic shape of a single finger propagating in a 
long, narrow Hele-Shaw cell (Saffman & Taylor 1958; Pitts 1980; McLean & Saffman 
1981 ; Vanden-Broeck 1983). The motivation for these studies was the observation 
in laboratory experiments that, when a fluid of very small viscosity (typically air) 
drives out another of much larger viscosity (such as oil or glycerine), the final shape 
of the interface is usually a single, long, finger-shaped bubble. In the original paper 
by Saffman & Taylor (1958) on this subject, a family of asymptotic, steady-state 
solutions was found for the possible shapes of such a finger. These solutions assumed 
that surface-tension effects at the interface could be neglected ( B  = 0 in our notation, 
see $ 1 and TA) and left the ratio of finger width to channel width unspecified. This 
undetermined width ratio became the prime object of study in most investigations 
to appear over the following two decades. In recent years some measure of resolution 
has come about regarding this point. McLean & Saffman (1981) suggested that the 
inclusion of lateral surface-tension effects (i.e. those due to variations in the plane 
of the Hele-Shaw cell plates) determines the width ratio, and they produced 
steady-state profiles generated numerically to support this conclusion. However, 
subsequently Vanden-Broeck (1983) suggested that the solution found by McLean 
& Saffman was just one of a family of steady-state solutions, so that for any value 
of the (lateral) surface tension there would be a countably infinite number of possible 
fingers of different widths. No physical argument to support this ‘quantization’ of 
widths was given in Vanden-Broeck’s brief study. 

Since all these asymptotic fingers are steady states, which, furthermore, are 
believed to be unstable (McLean & Saffman 1981), it is essential to attempt to 
understand what role such flow patterns might play in an initial-value problem. In 
this connection it is of interest to recall an early solution obtained by Saffman (1959) 
that describes the temporal evolution of an interface perturbed initially by a 

t Unfortunately equation (18) in TA defining B is slightly in error. The quantity B used in 
equation (16) of TA and elsewhere in that paper equals the right-hand side of TA (18) multiplied 
by i, i.e., in a gravity-driven cell of width W ,  B = a/( Wzg Ap), where a is the surface-tension 
coefficient and A p  the density drop at the interface, and g is the acceleration due to gravity. 
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FIGURE 1. Nine finite-amplitude, identical-finger interfaces, resulting from single-wavelength 
perturbations of a %at interface at the position of the tickmarks on the long sides of individual 
frames. Values of control parameter A are 0 (a-c), 0.5 (d- f ) ,  1 (g- i ) .  Surface tension (parameter 
B )  increases column by column from left to right, such that &/,If = 0.4 (u, d ,  g ) ,  1.0 (b ,  e, h) ,  1.67 
( c , f ,  9. 
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small-amplitude sine wave. (This solution again neglects surface-tension effects, but 
assumes periodic boundary conditions in the direction along the interface.) In 
Saffman’s (1959) solution, fingers of the more viscous fluid penetrate just as easily 
into the less viscous fluid as the converse, so that from the geometrical configuration 
of the interface at  any instant one cannot tell which fluid is of greater viscosity. In 
general it is found both in numerical and laboratory experiments that the large- 
amplitude evolution is not updown symmetric in this way, and thus the significance 
of this particular unsteady solution is unclear, as in fact already pointed out by 
Saffman (1959) (see also the remarks by Wooding & Morel-Seytoux 1976). 

In  this section we establish connections with these earlier investigations by 
computing the temporal evolution of an unstable interface, initially perturbed by a 
single (sine) wave of small amplitude, for various values of A and B. Figure 1 presents 
9 large-amplitude shapes of interfaces produced in this way. The initial mean position 
of the interface is given by the tickmarks on the long side of individual frames. It 
was argued and checked in TA that for an interface perturbed by an assembly of waves 
the relevant lengthscale is the length of the most unstable wave (Ao, say) which is 
determined by surface tension (i.e. the value of B). When the interface is perturbed 
by a single wave of a specific wavelength A, (as done in figure 1) that is, of course, 
no longer true. Now the wavelength imposed is of importance and the effect of surface 
tension (parameter B) is described by a ratio Ao/hf of the most unstable wavelength 
to the imposed wavelength. The results in figure 1 show interfaces for which A,/& 
is less than one (figures 1 a, d, g; Ao/Af = 0.4), equal to one (figure 1 b, e, h) and greater 
than one (figures 1 c, f ,  i ;  Ao/Af = 1.67). Actually this last set of results corresponds 
to such a large value of B that A, is almost within the domain of linearly stable waves.t 
By using an initial perturbation of sufficiently large amplitude, however, the interface 
can usually be ‘pushed’ beyond the linearly stable regime. Analytical studies of 
steady states frequently report on high-surface-tension regimes wherein the interface 
is actually linearly stable. 

For the particular numerical scheme we are using, low-surface-tension cases (small 
B) require that the numerical resolution is sufficiently high so that disturbances that 
are stabilized by surface tension are on the scale of a grid spacing or smaller (see TA).$ 
Our computational domain is periodic in the direction along the interface, and we 
have chosen to show two periods for each case, although in some cases only one period 
was actually computed. We found that for small A and small B (upper left in figure 
1 )  our code would faithfully simulate two periods retaining the periodicity exactly. 
For large A and large B (lower right in figure l),  on the other hand, numerical 
disturbances could amplify and lead to loss of periodicity at the largest amplitudes. 
Physical mechanisms responsible for such behaviour will become clear in $3. In a 
couple of instances lopsided, asymmetrical fingers emerged, apparently triggered by 
some asymmetry in the redistribution of computational points. Asymmetric fingering 
was discussed briefly by Birkhoff (see Taylor & Saffman 1958) and by Taylor & 
Saffman (1959), but seems not to have received further study. 

For a fixed value of A figure 1 shows that the width of the evolving fingers increases 
with increasing surface tension, in qualitative agreement with the steady-state results 
of McLean & Saffman (1981). (Quantitative aspects of this are discussed below.) For 
small surface tension (small B, figure 1 a, d, 9) differences between the finger patterns 

t The linearly stable regime starts at &/Af = 1/3. 
$, In figures 1 ,  3 ,5  and 7 the resolution of the Eulerian grid is apparent from the tickmarks at 

one end of individual frames. 
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FIQIJRE 2. Comparison of computed, asymptotic finger widths (per unit width of computational 
domain) to corresponding steady-state results of McLean & Saffman (1981) (solid curve) EM a 
function of &/Af. Symbols correspond to different spatial resolutions as follows: + ,32;  0 ,  16; 0,  
8 grid spacings per finger. 

for different values of A are slight, as one might expect on the basis of Saffman’s (1959) 
solution. For larger values of B a surface-tension-dependent ‘drop ’ appears in the 
finger pattern (figure 1 c , f ,  i). The position and size of this additional ‘drop’ depends 
on A. For A = 0 the interface must evolve in an up-down symmetric way (see TA) 
and the fingers expand at the position of the initial interface (figure 1 a+). For non-zero 
A non-symmetrical patterns result (figure 1 e ,  f, h, i). 

For A = 1 we have compared our evolving fingers quantitatively to the steady-state 
solutions obtained by McLean & Saffman in two ways. First, in figure 2 we have 
plotted the maximum width (per unit width of the computational domain) of the 
finger of ‘inviscid’ fluidt versus Ao/Af for the A = 1 runs in figure 1 and for two 
additional runs (with /\,,/Af = 0.75 and 1.4 respectively). Our data points (crosses, 
other symbols are explained below) are shown superimposed on the graph obtained 
by McLean & Saffman for steady states.$ It is seen that particularly good agreement 
between long-time evolution and steady-state results is obtained for values of 
Ao/Af x 1. For small and large values of this ratio deviations appear in our 
asymptotic, scaled widths. In both limits we are presumably seeing effects of imposing 
on the evolving interface a perturbation wavelength that is well removed from the 
dynamically most unstable mode. For Ao/Af = 1.67 we believe that the deviation of 
our points from the curve in figure 2 is due to incomplete relaxation and equilibration 
of the finger. As mentioned previously, A, is here almost in the linearly stable regime, 
and it was necessary to start the calculation with a sizeable amplitude of the 
perturbing wave, considerably larger than that used for the runs that make up the 
middle column in figure 1. Because of the mismatch between preferred and imposed 

t As mentioned in TA, the limit A = 1 is slightly artificial. The ‘inviscid’ fluid is still assumed 
to satisfy the (limiting form of the) Hele-Shaw equations and not Euler’s equation. 

$ Our figure 2 is equivalent to figure 4 of McLean & Saffman (1981). We are indebted to Dr 
McLean for sending us several tables of data relating to his computed steady-state solutions. 
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FIQURE 3. Very-large-amplitude finger for A = 1, &/Ar = 0.4. The underlying grid is 32 x 384. This 
finger appears highly regular and stable. I t  is some 8 yo thinner than the corresponding McLean 
& Saffman (1981) steady state. 

spatial periodicity the equations of motion become somewhat stiff in this case and 
the computations leading to figure l( i) ,  in particular, were more demanding of 
resources than one might expect. 

The situation for &/Af = 0.4 is more difficult. The fingers that we produce are some 
8 yo narrower than the corresponding McLean & Saffman steady state. As shown in 
figure 3, we have run this particular finger to more than twice the amplitude shown 
in figure 1 (g) in the hope that it would widen somewhat as the relaxation progressed. 
(We argue at the end of $3.1 that for A, > A, fingers will approach their asymptotic 
width from below.) This did not happen. We have varied the interplay between 
time-stepping and point-redistribution algorithms (cf. TA) in various ways in the 
hope of discovering purely numerical reasons for the thin fingers. Again we could 
produce no change. Finally we have considered the effect of grid resolution on all runs. 
As figure 1 shows, the resolution used is such that each finger spans 32 grid spacings. 
On a coarser grid, e.g. one with only 8 grid spacings over the width of a finger, one 
may expect grid effects to act as an artificial surface tension and thus fatten fingers. 
(This is not rigorously true, e.g. the dispersion relation in linearized theory is 
different; cf. TA.) This behaviour is indeed observed (see the open dots in figure 2) 
for low A,/A,. For larger values of Ao/Af grid effects are slight even after coarsening 
the grid by a factor of 4 (this feature is discussed again when we come to figure 4). 
For Ao/Af = 0.4 we also show the asymptotic width for a resolution of 16 grid spacings 
per finger (solid dot). The results in figure 2 suggest that we do achieve convergence 
under grid refinement, but for Ao/Af = 0.4 this convergence is unmistakably towards 
a finger pattern with narrower fingers than any of the known steady-state solutions 
(with surface tension). We have no conclusive explanation for this result. It may point 
to a shortcoming of our numerical procedure in this limit, or it may indicate some 
as yet undiscovered bifurcation phenomenon. In any case we shall not pursue this 
issue further here, since we shall obtain a better understanding of the significance 
of single fingers for interface evolution later. We should, however, emphasize that, 
since the calculations reported in TA were for freely evolving interfaces, they always 
corresponded to the regime of figure 1 (b, e, h), at least during early stages. 

As a second more detailed check on our methodology we have compared the full 
single-finger profile of figure 1 (h) with the appropriate steady-state finger of McLean 
& Saffman (1981), again using data kindly provided by Dr McLean. Figure 4 
summarizes the results of this comparison. The solid curve gives data from the 
McLean & Saffman calculations of steady-state profiles. It consists of two parts: a 
detailed ‘nose’ profile and an asymptotic width. Both parts are shown in figure 4. 
Also shown are the positions of vortex elements representing the interface in our 
computational scheme (see TA)  for two different runs. The crosses represent 
Lagrangian vortex elements on the finger (after considerable evolution) using an 
underlying Eulerian grid (see TA) with a resolution as indicated. by the tickmarks 
at the extreme left of figure 4 (32 grid spacings per finger). The agreement is obviously 
excellent. The open dots provide similar data for a run where the Eulerian grid was 
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FIGURE 4. Comparison of computed, asymptotic finger profile for A = 1, &/,If = 1, to steady-state 
solution of McLean & Saffman (1981) (solid curve). Symbols indicate instantaneous positions of 
some vortex elements, and correspond to different spatial resolutions as follows: x ,32  grid spacings 
per finger (tickmarks at left), 0, 8 grid spacings per finger (tickmarks at right). 

four times coarser, with a resolution indicated by the tickmarks at the extreme right 
of figure 4 (8 grid spacings per finger). We see that the agreement is still very 
satisfactory, in spite of the substantial nominal decrease in Eulerian resolution 
(resulting, incidentally, in a considerably reduced demand on computer resources). 
We note that not all the vortex elements actually used in the computations are shown 
in figure 4. It thus appears that our hybrid Eulerian-Lagrangian code (see TA) retains 
a remarkable degree of spatial ‘ subgrid ’ resolution. Well-known sources of numerical 
error such as grid-induced velocity anisotropy (cf. Aref & Siggia 1980) are not in 
evidence. This is all very encouraging for applications to statistical flow regimes. 
However, we must mention (as already remarked in TA) that the evolution in time 
on the coarser grid is somewhat slower than on the fine grid. 

We conclude this section with miscellaneous remarks and comments. (i) The 
calculations reported in TA used spatial resolutions per interfacial structure inter- 
mediate between the two cases illustrated in figure 4. (ii) The relaxation to asymptotic 
steady states of the type found by McLean & Saffman in our initial-value calculations 
makes the currently predicted linearized instability of these states seem even more 
paradoxical. It has always been possible to rationalize the emergence of single fingers 
in experiments by appealing to stabilizing physical mechanisms conceivably present 
in the experimental setup but definitely absent from the Hele-Shaw equations. Our 
calculations strongly suggest the emergence of steady-state fingers entirely within the 
framework of the Hele-Shaw equations. When ‘grown ’ from single-wavelength initial 
perturbations these fingers appear very stab1e.t (iii) Although the agreement between 
our numerical results and analytic theory seems quite satisfactory, the main virtue 
of a vortex-in-cell-based code is the reduction in operation count per time step. This 
feature allows such a code to probe statistical flow regimes. However, the introduction 
of an Eulerian grid allows a multitude of numerical artifacts to enter the calculations, 
including the anisotropy alluded to above. Also the spatial cutoff at small scales 

t We are indebted to Professor L. P. Kadanoff, Dr B. Shraiman and Dr D. Bensimon for an 
interesting discussion in which this point was emphasized. The same point was raised by Professor 
P. G. Saffman following the presentation in Aref & Tryggvason (19843). 
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imposed by the grid essentially dictates use of a surface tension a t  the interface. For 
these reasons, and in view of the potential problems mentioned above for small 
surface tension, we do not advocate use of this type of code for probing sensitive 
analytical issues (e.g. singularities after a finite time for vanishing surface tension) 
involving initial conditions with just one or two wavelengths. For such investigations 
direct summation implementations of the boundary integral method? are practicable 
and probably preferable. (iv) As far as we are aware, we have not seen any 
manifestations of the spectrum of auxiliary steady-state solutions proposed by 
Vanden-Broeck (1983). This comment is not intended to question his analysis, but 
simply to  record that we have no idea a t  present on how to generate such solutions 
in an  initial-value calculation. 

3. Two-wave initial conditions 
I n  order to gain an understanding of the underlying physical mechanisms 

responsible for interfacial patterns in stratified Hele-Shaw flow, it is desirable to study 
solutions to the equations of motion that are simple yet capture essential elements 
of the interaction processes observed. The identical-finger solutions discussed in 0 2 
obviously do capture the most fundamental aspect of an unstable interface, viz the 
appearance of fingers. However, just as obviously, such solutions give few hints as 
to  the complex interactions that may occur between different fingers at large 
amplitudes. And one knows from laboratory experiments (e.g. Wooding 1969) that 
the long-time evolution of an interface is in general influenced by the outcome of such 
interactions. Specifically, the single-finger solutions of $2 showed considerable 
insensitivity to the control parameter A (see figure l ) ,  which we know from TA exerts 
a profound influence on interface evolution in the statistical-fingering regime. One 
question that arises, then, is how many waves are required for the main modes of 
finger competition and finger merging observed in the statistical problem. As we shall 
see in this section initial conditions with just two waves can lead to  several of the 
main interaction patterns observed previously in TA for evolution from ‘random ’ 
initial conditions. 

3.1. Finger competition and selection 
Examples of evolution of two-wave initial conditions for A = 0, 0.5 and 1 (and 
fixed B )  are shown in figure 5 .  The general amplitude of the main perturbing wave, of 
wavelength close to the most unstable wave, is clear from the first frame in each 
sequence, but there is actually an admixture of a second wave of twice the wavelength 
and 20% of the amplitude. During initial stages of evolution the interface shape is 
largely independent of A .  (This is consistent with linearized stability analysis, where 
the growth rates of unstable waves are independent of A . )  However, as the fingers 
grow the sequences in figure 5 differentiate themselves according to the value of A 
as the effect of the second wave becomes evident. 

Comparing the results of this two-wave initial perturbation to the results of 
single-wave initial conditions from $2 (figure l ) ,  we see that the amplitude retardation 
imparted to every other finger in figure 5 amplifies in time for all values of A ,  so that, 
instead of having two identical fingers in the final panels of figure 5, the middle fhger 

t Professor G. R.  Baker informs us that he has recently completed such a code. 
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FIGURE 5. Three time sequences of evolving interfaces started from a perturbation of a flat interface 
consisting of a basic wave with a 20% admixture of a wave of twice the wavelength. For all runs 
A. x Ar (for the basic wave) and (a) A = 0,  ( b )  0.5, (c) 1. Note the selection of the finger growing 
out of the highest crest of the initial perturbation. 
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is longer than the finger straddling the periodic boundary. This selection mechanism 
increases in importance with increasing values of A. 

The asymmetry between the degree of penetration of more viscous and less viscous 
fluid for non-zero A ,  which was so obvious in the statistical flows of TA, is thus seen 
to  manifest itself already for two-wave initial perturbations. In this sense, then, the 
single- (or identical-) finger solutions of $2 must be considered rather special. Initial 
perturbations with more than a single wavelength (as one would generally expect in 
practice) will lead to competition and selection processes. Nevertheless, if for A = 1 
one compares the tip of the surviving finger in figure 5(c )  to a solution of the type 
shown in figure 1, i t  is found that the finger profiles are very close. Thus for A = 1 
the asymptotic results for single-finger shapes do appear relevant in general (we return 
to  this feature at the end of this subsection). However, for smaller values of A the 
asymptotic state of the largest finger evolving from a two-wave initial perturbation 
appears distinctly different from the single-wave fingers of fj2.t 

I n  an attempt to quantify these observations we have monitored heights of various 
‘peaks’ and ‘valleys’ of the interface profile as a function of time. Figure 6 shows 
data of this type. Time is along the abscissa, and the heights defined in the inset sketch 
are plotted along the ordinate. Time histories corresponding to  the interfaces shown 
in figure 5 carry a subscript 1. Another similar run with a second-wave amplitude 
of just 2 % of the main-wave amplitude leads to growth of primary and secondary 
fingers given by the curves subscripted 2 in figure 6 .  Let us now comment on these 
graphs. First, for A = 0 the graphs y l ,  y2 follow immediately from a1,a2 by 
symmetry. For A > 0 this is no longer true, and the increasing up-down asymmetry 
that has been mentioned several times already is evident in figure 6 also. Secondly, 
as expected, the graphs /I2, y2 follow each other more closely than pl, y1 because the 
initial amplitude of the second wave is ten times smaller. In the absence of a 
second-wave perturbation we would revert to the identical-fingering process of $ 2, 
and the p- and y-graphs would coincide. The effect of A is seen to  manifest itself in 
that p and y separate much earlier and more decisively for large A (figure 6c)  than 
for small A (figure 6 a ) .  In  fact for A = 1 the secondary fingers can apparently be 
pulled down completely, and should be entirely eroded away with time, i.e. the p1 
graph bends over and tends towards the a1 graph in figure 6(c ) .  For A = 0 the 
secondary fingers continue to  grow. For intermediate A, for example A = 0.5 
(figure 6b) ,  the ultimate fate of secondary fingers seems to depend on the magnitude 
of the initial perturbation. 

A most interesting feature of figure 6 is that the growth of the total width of the 
finger region, i.e. y-a,  is sensitive to the interactions going on within. For all A the 
strongly perturbed interface (case 1) grows somewhat faster than the weakly perturbed 
one (case 2). The ultimate growth rates (slopes of al, a2 and yl, y z )  are similar, but 
there is a ‘delay ’ as if interactions between the fingers have to ‘ sort out ’ which fingers 
will ‘lead’ and which will ‘follow’. For A = 1 the a-graph is completely insensitive 
to  these amplitudes of second-wave perturbation, as one might expect. 

We point out that  the result obtained in figure 5 ( c )  suggests that  for A = 1 fingers 
with A, > A, approach their asymptotic width from below. For suppose the calculation 
in figure 5 (c) continued until essentially just one long, asymptotic finger remained. 

t We have, of course, only shown a difference at finite amplitudes, but we find it difficult to 
see how the interface in figure 5 ( b )  can relax to a finger of the type shown in figure 1 (e). In fact 
the two-wave initial condition can probably lead to droplet pinch-off at the finger tip. 
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FIQURE 7. An example of finger merging and droplet pinch-off generated from a two-wave initial 
condition with perturbing waves of wavelength ratio 4 : 1.  For this caee A = 0.5, the two perturbing 
waves have the same amplitude, and the shorter wavelength is close to the most unstable 
wavelength A,. 

Since this finger initially came from a wave with dominant wavelength close to A,, 
and since it is approaching twice the width one would expect for a pure single-wave 
initial condition with wavelength A,, it  must correspond to the regime A, > A, in 
the context of figure 1. Clearly in this specific evolutionary sequence the finger 
approaches its asymptotic width from below. This argument was the basis for the 
hope that the finger in figure 1 ( g )  would 'fatten' upon further evolution (see $2). 

The results in figures 5 (c) ,  6 ( c )  also suggest that for A = 1 the surviving asymptotic 
finger corresponds to the longest excited wave of the initial state, even though this 
wave may only be present with a small amplitude. The longest wavelength available 
in a real Hele-Shaw cell equals the width of the cell. 

3.2. Finger merging 
If the wavelengths of the two perturbing waves have a ratio different from 2 : 1 other 
modes of finger interaction, in particular finger merging, become possible for A < 1. 
Consider, for example, the case shown in figure 7 where the two waves have 
wavelengths of ratio 4: 1. In this example A = 0.5, and B was chosen such that the 
wavelength of the shortest perturbing wave is close to the linearly most unstable 
wave. The two perturbing waves are of the same amplitude as seen in the plot of initial 
condition (figure 7a). The relatively large amplitude of the longer perturbing wave 
was chosen so that the finger interactions of interest could take place at reasonably 
low overall amplitude. As we have seen in 53.1, the time delay for a second-wave 
perturbation to manifest itself increases with decreasing amplitude of the wave. This 
is also true for,finger-merging modes. 

We have not pursued in detail how aspects of finger merging depend on the waves 
present in the initial state. Our main point is that such modes are accessible already 
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from entirely regular two-wave initial conditions, and thus must be expected to  occur 
quite generally. We have already commented in TA on the physically plausible way 
that our code handles dynamically inert double interfaces resulting from finger 
merging or droplet pinch-off. 

4. Conclusions 
By numerical calculations of the initial-value problem for a sharp interface 

evolving according to  the Hele-Shaw equations we have shown the following. 
(1) Single- (or identical-) finger solutions can be obtained for arbitrary values of A 

by considering initial perturbations with only a single wavelength. There are effects 
of surface tension to  be seen in these solutions, and these are coupled to  the value 
of A ,  but on the whole single-finger solutions are insensitive to this main control 
parameter. When the perturbation wavelength agrees with the linearly most unstable 
wavelength, the computed long-time finger for A = 1 agrees with asymptotic 
steady-state solutions of McLean & Saffman (1981). 

(2) Even a slight admixture of a second wave leads to  finite-time evolution patterns 
that can be very different from the identical-finger results. Impeding some fingers 
initially typically leads t o  their demise with time, and this finger-selection mechanism 
becomes stronger as A increases. The asymptotic shape of surviving fingers is similar 
to the identical-finger solutions for A = 1, but appears to deviate from this for A < 1. 

(3) Finger collision, merging and droplet pinch-off can be achieved for A < 1 
starting from two-wave initial perturbations. 

It is tempting to conclude that all the results of the statistical-fingering calculations 
in TA could have been obtained using flows with just a few fingers (and thus much 
cheaper computations). Such a conclusion would be unfounded. On one hand we could 
not know a priori if, for example, three-finger collisions would be important, and the 
only way to check for this kind of collective effects is to simulate flows on such a scale 
that these effects have a chance to  manifest themselves. On the other hand, there 
are details of the complex interfaces simulated in TA that defy the simpler 
calculations considered here. (The finger-splitting event observed for A = 0.5 (see 
figure 6 of TA) is an example.) Our main point is that  with two-wave perturbations 
we can ‘synthetically ’ produce, and hence make considerable headway towards 
understanding, some of the main finger interaction and competition mechanisms that 
one observes for statistical interfaces. 

Since solutions with periodically repeated, identical fingers miss several essential 
dynamical processes for an evolving interface, the studies presented here illustrate, 
through a rather simple example, how misleading i t  can be to  attempt to predict the 
finite-amplitude behaviour of fluid motions by analyses based on steady states and 
linearized stability considerations. Although steady states are valuable, because they 
are usually exact, mathematical solutions, initial-value calculations are essential in 
order to capture the full dynamical evolution. 
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